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ABSTRACT
Purpose Experimental Blood–Brain Barrier (BBB) permeability
models for drug molecules are expensive and time-consuming.
As alternative methods, several traditional Quantitative Structure-
Activity Relationship (QSAR) models have been developed previ-
ously. In this study, we aimed to improve the predictivity of tradi-
tional QSAR BBB permeability models by employing relevant
public bio-assay data in the modeling process.
Methods We compiled a BBB permeability database consisting
of 439 unique compounds from various resources. The database
was split into a modeling set of 341 compounds and a validation
set of 98 compounds. Consensus QSAR modeling workflow was
employed on the modeling set to develop various QSAR models.
A five-fold cross-validation approach was used to validate the
developedmodels, and the resulting models were used to predict
the external validation set compounds. Furthermore, we used
previously published membrane transporter models to generate
relevant transporter profiles for target compounds. The transport-
er profiles were used as additional biological descriptors to devel-
op hybrid QSAR BBB models.
Results The consensus QSAR models have R2=0.638 for five-
fold cross-validation and R2=0.504 for external validation. The
consensus model developed by pooling chemical and transporter

descriptors showed better predictivity (R2=0.646 for five-fold
cross-validation and R2=0.526 for external validation). More-
over, several external bio-assays that correlate with BBB perme-
ability were identified using our automatic profiling tool.
Conclusions The BBB permeability models developed in this
study can be useful for early evaluation of new compounds
(e.g., new drug candidates). The combination of chemical and
biological descriptors shows a promising direction to improve
the current traditional QSAR models.
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ABBREVIATIONS
5-HT 5-hydroxytryptamine
AD Applicability domain
ADME Absorption, distribution, metabolism, and excretion
AID PubChem bio-assay identifier
ALDH1A1 Aldehyde dehydrogenase 1 family, member A1
AR Androgen receptor
ASBT Apical sodium-dependent bile acid transporter
BBB Blood–brain barrier
BSEP Bile salt export pump
CAMP Cyclic adenosine monophosphate
CID PubChem compound identifier
CNS Central nervous system
ER-Alpha Estrogen receptor alpha
HITs Human intestinal transporters
HTS High throughput screening
kNN k-nearest neighbor
logBB Logarithm of brain-plasma concentration ratio at

steady-state
MAE Mean absolute error
MCT Monocarboxylic acid transporters
MDR Multidrug resistance
MDR1 Multidrug resistance protein 1
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MOE Molecular operating environment software
MRP1 Multidrug resistance-associated protein 1
MRP3 Multidrug resistance-associated protein 3
MRP4 Multidrug resistance-associated protein 4
MRP5 Multidrug resistance-associated protein 5
OATPs Organic anion transporting polypeptides
PCA Principle component analysis
QSAR Quantitative structure-activity relationship
RF Random forest
SVM Support vector machine

INTRODUCTION

The blood–brain barrier (BBB) separates the central nervous
system (CNS) from the circulatory system and selectively limits
many substances from entering the brain. The BBB is a so-
phisticated barrier system. Besides the tight junction and cell
membranes that limit passive diffusion of molecular sub-
stances, the BBB is also composed of transporters that selec-
tively regulate permeation of exogenous molecules (1).

The study of BBB permeability is crucial for drug develop-
ment. While BBB permeability is required for CNS drugs to
work (2), unexpected passage of a drug through BBB may
cause severe side effects (3). Traditional experimental ap-
proaches to evaluate drug BBB permeability, such as animal
testing, are expensive and time consuming. Therefore, alter-
native methods with significantly lower cost, such as in vitro or
computational models, are desirable for drug research and
development. Various computational models, especially those
using Quantitative Structure-Activity Relationship (QSAR)
approaches, have been developed in the past decades.
Table SI shows QSAR models on the BBB permeability pub-
lished within the last 5 years. However, the QSAR hypothesis
that Bchemically similar compounds tend to have similar
activities^ has its limitation when the modeling set is neither
large and nor diverse (4). In small datasets, the existence of
structurally similar compounds with vastly different activities,
also called Bactivity cliffs,^ greatly affects the predictivity of
QSAR models (5).

With the development of high-throughput screening (HTS)
techniques in the past decades, massive amounts of bio-assay
data have become publically available. PubChem, the largest
public data sharing portal, contains over 700,000 bio-assays
with around 50 million compounds tested (6). A substantial
number of PubChem bio-assays showed relevance to BBB
permeability. For example, brain adenylate cyclase assays
(PubChem AID 34292 and 34293) indicate binding affinity
of this membrane-associated enzyme, which catalyzes the for-
mation of the secondary messenger cyclic adenosine
monophosphate (cAMP) and regulates the permeability in
the brain capillaries (7). While the current BBig Data^ pool
is large, complex, and informative, there still exists a major

challenge in how to apply these available comprehensive data
on systemic biological models (e.g., BBB permeability models)
and benefit from it.

In this study, we address the above challenges by improving
the predictivity of conventional QSAR models on BBB per-
meability using publicly available bio-assay data. To this end,
we compiled a large quantitative BBB permeability database
of 439 unique compounds (Supplementary files Table SII),
which is larger than the training sets used in most of the pre-
vious modeling studies (Supplementary Table SI). After ap-
plying various modeling approaches (i.e., k-nearest neighbor,
random forest and support vector machine), the external
predictivity of the resulting combinatorial QSAR model is
comparable to previous developed models. Then, by applying
the transporter assay data generated by our in-house models
(8) as biological descriptors, the predictivity of the resulting
hybrid model was superior to the original QSAR models
based only on chemical descriptors. Furthermore, we used
our in-house automatic profiling tool (9) to generate a
PubChem bio-assay profile for each compound in the dataset.
The resulting profile contains 155 assays relevant to the BBB
permeability. Although not suitable as additional descriptors
due to missing data, some assays were able to provide possible
explanations for some of the models’ prediction outliers (com-
pounds with large prediction errors).

METHODS

Dataset

A dataset of 484 compounds with experimental BBB perme-
ability results was compiled from various public sources
(10–13). The experimental values, which were represented
as logBB (logarithm of brain-plasma concentration ratio at
steady-state), range from −2.15 to 1.64 for these compounds.
The chemical structure curation was performed using two
chemical structure standardizer tools (Standardizer 6.3.0 from
ChemAxon and CASE Ultra Datakurator 1.5.0.0 from
Multicase Inc.) to remove duplicates, inorganics and mixtures.
Since our descriptor generator cannot distinguish stereoiso-
mers and salts, they will be considered to have the same chem-
ical structures as their parent compounds. For this reason,
duplicate compounds with different logBB values were care-
fully examined. In these cases, the 2-D structure of each ste-
reoisomer was used and the larger component of the salt was
neutralized and kept. This effort resulted in a curated logBB
dataset consisting of 439 unique compounds. The source con-
taining the largest number of compounds (total 362 com-
pounds reported, 341 unique compounds after the curation)
(10), was used as the modeling set in our study. The remaining
98 compounds were used as the external validation set. The
distribution of the dataset by logBB ranges is shown in Fig. 1.
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Furthermore, after the QSAR models were developed, the
compounds in this dataset were further classified as BBB per-
meable (logBB>0) or non-permeable (logBB≤0). This arbi-
trary threshold used for classification was reported in several
previous studies (14,15).

Overview of the Workflow in this Study

Figure 2 summarized the workflow designed for this study.
After data curation, the QSAR approaches were applied to
develop several QSAR logBB models. This procedure,
framed red, represented the traditional QSAR modeling for
the BBB permeability using rigorous external validation. Our
in-house automatic profiling tool was used to extract all rele-
vant biological response data for the compounds in the logBB
dataset (framed by orange in Fig. 2). Then the chemical de-
scriptors obtained from the chemical structures and the bio-
logical descriptors generated by the QSAR models of nine
transporters were combined to develop an enhanced hybrid
logBB model (framed by blue in Fig. 2).

Chemical Descriptors

The 2D Molecular Operating Environment (MOE) descrip-
tors include physical properties, atom and bond counts, con-
nectivity and shape indices, adjacency and distance matrix
descriptors, subdivided surface areas, pharmacophore feature
descriptors and partial charge descriptors, etc. A total of 192
2D descriptors were generated for each compound in the
dataset using MOE version 2013.08. After the descriptors
were range-scaled to [0, 1], redundant descriptors were re-
moved by deleting those with low variance (standard deviation
<0.01) and/or randomly keeping one of any pairs of descrip-
tors that have high correlation (R2>0.95). The remaining 125
descriptors were used in the modeling process.

Modeling and Approaches

The QSAR models were developed using three different ma-
chine learning algorithms: RandomForest (RF), Support Vec-
tor Machine (SVM) and k-Nearest Neighbor (kNN). RF pre-
dictor consists of many decision trees and produces a predic-
tion that combines the outputs from individual trees (16).
SVM regression attempts to find the most narrow band in
the descriptor-activity space containingmost of the data points
(17). We used standard implementation of RF and SVM al-
gorithms as realized in R®0.2.15.1 using the package
Be1071^ (18). The settings of all statistical parameters to run
these two algorithms were kept as default. The kNN (19) meth-
od uses weighted average of nearest neighbors as its prediction
and employs variable selection procedure to define neighbors.
It was developed using our in-house program implementation
(20) (also available at chembench.mml.unc.edu). An extra
consensus QSAR model was then generated by averaging
predictions of the three individual models. The development
and application of consensus QSARmodels have been report-
ed in our previous publications (21–23).

All models were validated using a five-fold cross-validation.
Briefly, themodeling set was randomly divided into five equiv-
alent subsets. One subset was used as the test set (20% of the
modeling set compounds) and the remaining four subsets
(80% of the modeling set compounds) were used as the train-
ing set. The training set was used to develop the QSAR
models and the resulting models were validated by predicting
the excluded test set. The procedure was repeated five times so
that each modeling set compound was used in the test set
once. Additional details regarding the QSAR modeling and
validation procedure can be found elsewhere (24,25).

Integration of Biological Descriptors

We recently reported a QSAR modeling study for predicting
chemical interactions of different Human Intestinal Trans-
porters (HITs) (8). Some HITs presented on the BBB affect
the permeability of compounds, e.g., Apical Sodium-
Dependent Bile Acid Transporter (ASBT) (26,27), Bile Salt
Export Pump (BSEP) (28,29), Monocarboxylic Acid Trans-
porters (MCT) (30), Multidrug Resistance Protein 1 (MDR1)
(31), Multidrug Resistance-Associated Proteins (MRP1,3,4,5)
(32), and Organic Anion Transporting Polypeptides (OATPs)
(33). In this study, the predicted values were obtained from
previously developed transporter models (8) available on
chembench.mml.unc.edu, model ID: ASBT (112a, 112q,
112r), BSEP (242x, 242z), MCT1 (311q, 311x), MDR1
(313a, 313d, 313s, 313z), MRP1 (321x, 321z), MRP3 (333a,
333q, 333s, 333w), MRP4 (342x, 342z), MRP5 (344a, 344q),
OATP 2B1 (413x, 413z). There are multiple QSAR models
available for each transporter, thus the average predictions
from individual models of each transporter were calculated
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Fig. 1 Distribution of compounds by logBB values. Left (blue) are Bnon-
permeable^ compounds with logBB≤0, right (red) are Bpermeable^ com-
pounds with logBB>0.
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and used in constructing the transporter profile. Finally, nine
transporter activities were obtained for all 439 compounds in
our database. None of the nine transporter activities correlat-
ed with each other for our data set and neither of them cor-
related with any of the 125 chemical descriptors (standard
deviation≥0.01, R2≤0.95) that were used in the modeling
process. Thus, the predicted activities of nine transporters
were directly combined with the chemical descriptors to get
the hybrid descriptors set. Then, the hybrid models were built
based on the hybrid descriptor set using the same modeling
approaches.

Additional bio-assay data was obtained from PubChem
using our in-house automatic profiling tool (9). This tool aims
to automatically extract experimental activities of PubChem
assays for target compounds. The bioassays and their response
data were kept when a bioassay has at least four active

responses in our 439 compounds. The output file is a two-
dimension matrix similar to the descriptor set used in the
modeling process. The gathered bioassay data were then used
for correlation analysis of BBB permeability. To simplify the
identification and analysis of the bio-assays, the logBB values
were categorized (logBB>0 as permeable with activity as 1,
logBB≤0 as non-permeable with activity as −1; see Fig. 1).
The PubChem assays, with at least four compounds reported
as permeable in our BBB database were kept for further anal-
ysis. Using this criterion, 310 PubChem assays and their
response data were collected for the 275 compounds in
our BBB database. Correlation of each bioassay to BBB
permeability was calculated as the predictivity (number
of true predictions over total number of known predic-
tions) of this assay results to BBB permeability classifi-
cations. To further evaluate the correlation between

Fig. 2 Modeling workflow in this study.
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bio-assay data and BBB permeability, a Psum parameter
was created as following:

Psum ¼ Sum Responsesð Þ
.
N

In which, Sum(Responses) is the sum of the classified assay
activity (1 for actives and −1 for inactives) for all compounds
tested in this bio-assay and N is the number of these com-
pounds. Thus, Psum>0 indicates that active response domi-
nants while Psum <0 indicates negative response dominants.

RESULTS

Overview of the BBB Permeability Database

We analyzed the chemical space of the logBB dataset by
performing a Principle Component Analysis (PCA) with the
192MOE 2D descriptors used in this study. The top three most
important components were used to generate a three-
dimensional distribution plot for all 439 compounds (Fig. 3).
Since these three components explained 59%of the total descrip-
tor variance in this dataset, Fig. 3 can be viewed as the represen-
tation of chemical space covered by all compounds. There are
several structural outliers, mostly non-permeable compounds.
For example, Digoxin (PubChem CID 30322), which is widely
used in heart failure treatment, was proven to be actively
transported out of the BBB by MDR1 (34). Excluding structural
outliers from the modeling set may improve robustness of the
QSAR models (35), while outliers in the external set should be
detected by the model’s applicability domain (21,22). Since

removing these structural outliers (e.g. Digoxin) did not show
better modeling results (data not shown), and their logBB predic-
tions might be improved after including biological descriptors,
they were kept in this study. Using the same three principle
components, the Supplementary Figure S1 showed the chemical
space distribution of both modeling and external validation sets.

Consensus QSAR Results

We developed three individual models and one consensus
logBB model using the same modeling set. The performances
of the models are represented by the five-fold cross-validation
results and by predicting the external validation compounds
(98 compounds not used in model development). The perfor-
mances for all models are shown in Fig. 4. Among the indi-
vidual models, the kNN model has a superior result for the
five-fold external cross-validation (R2=0.690 and MAE=
0.302). However, the RF model has the best performance
when predicting external compounds (R2=0.524 and
MAE=0.399). The conflicts between the results obtained
from cross-validation and external prediction were reported

Fig. 3 Chemical space of logBB database (n=439) using top three principal
components of MOE 2D descriptors (59% variance explained). Purple dots
are Bnon-permeable^ compounds with logBB≤0, red dots are Bpermeable^
compounds with logBB>0.
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in many previous QSAR studies (21,36). Meanwhile, using
AD did not show improvement of results for five-fold cross-
validation or external set predictions. We therefore retained
all predictions (100% coverage). This condition makes it diffi-
cult to select the Btop model^ from various individual models
for the purpose of external prediction. The consensus model
(represented as CSS in Fig. 4), however, yielded better perfor-
mance (R2=0.638 MAE=0.315 in five-fold cross-validation,
and R2=0.504 MAE=0.430 in external validation) when
compared to SVM and RF models in cross-validation, and
SVM and kNN models in external prediction. Since it con-
siders the output of all of the individual models without mak-
ing model selection, yields better predictions for both cross-
validation and external validation results than most individual
models, the consensus model is more stable and reliable when
predicting new compounds.

Bio-assay Data Improve Model Predictive Power

Our previous studies showed that using hybrid descriptors,
which are the combinations of chemical and biological de-
scriptors, showed superior results compared to traditional
QSAR models only based on chemical descriptors
(23,37,38). The predictivity of hybrid modes is higher than
the traditional QSAR models and the analysis of chemical-
biological descriptor patterns in resulting models can reveal
the relevant chemical biological mechanisms of target activi-
ties. In this project, we assumed BBB permeability of a drug
strongly depends on its biological interactions with active
transporters on the BBB. Based on this hypothesis, we inte-
grated the in-house transporter model predictions into our
QSAR modeling process as extra biological descriptors. By
combining the original chemical descriptors with transporter
activities (as biological descriptors) into a hybrid (shown in
Fig. 2), the predictivity of models in both the cross-validation
and external prediction was improved. For the five-fold cross-
validation, the results were improved for all three models. For
example, in the SVM model, the R2 value increased from
0.477 to 0.529, and the MAE decreased from 0.375 to
0.359 after including the transporter descriptors. Improve-
ments were also observed in the external validation, with the
exception of SVM. The kNN model, for instance, had the R2

value improved from 0.464 to 0.520, and the MAE decreased
from 0.440 to 0.422 for the prediction of validation set after
including the transporter descriptors. The consensus model,
regardless of modeling tools, also yielded the same trend of
improvement in both cross-validation and external prediction
(Fig. 4). The non-parametric paired permutation test (N=10,
000 on MAE and R2 metrics) using the in-house Matlab
script, which compares various performance metrics for two
sets of matching predictions, showed that the improvement
was significant for SVM (p<0.001) in five-fold cross-valida-
tion, RF and kNN and Consensus model (p<0.05) in external

validation by paired permutation test comparison of MAE
and R2, (N=10,000).

Driven by the benefit of including extra biological descrip-
tors, we profiled 310 PubChem assays for the current BBB
database. Figure 5 shows the correlation between these assays
and BBB permeability. Assays were sorted by their correlation
to the categorized logBB values for compounds in our BBB
dataset. There are 144 assays (highlighted in orange dots on
the bottom) with positive correlation to BBB permeability and
11 assays (highlighted in green dots on the top) with negative
correlation to BBB permeability. In Fig. 5, according to the
BBB permeability, the BBB database was divided into eight
subsets, each containing 32–37 compounds. The difference of
the Psum value for each subset indicates the correlation of the
relevant PubChem assay responses to the BBB permeability.
At this time, this extra information cannot be applied to our
modeling procedure due to missing data, as only 275 of 439
compounds in the data set were found to have at least four
experimental data points from these assays as well as the in-
complete profiles within the 275 compounds. Future QSAR
modeling studies on these assays could supply the missing data
and allow for this approach to be fully implemented.

DISCUSSION

Since the BBB is a complex biological system composed of
diverse receptors, enzymes, and transporters, the traditional
QSAR studies meet the bottleneck of predictivity. Models
built on chemical descriptors (e.g., MOE descriptors) obtained
from a limited number of compounds are sometimes unable
to distinguish two structurally similar compounds with differ-
ent bio-activities (i.e., logBB values). This Bactivity cliff^ issue
limits the application of computational predictive models that
are based only on chemical descriptors (4).

The bio-assay responses of target compounds provide extra
information that can be used to improve traditional QSAR
models (37,38). Membrane transporters expressed in brain
micro-vessels regulate the extent of flux and rate of exchange
of substances between the circulatory system and CNS (39).
Thus, a compound’s binding affinity to transporters will affect
BBB permeability. As expected, our modeling results showed
predictivity improvement by a simple combination of chemi-
cal descriptors and transporter descriptors (Fig. 4). This indi-
cates that the improvements of prediction were due to infor-
mation provided by the transporter data.

In order to interpret the mechanisms by which transporter
interaction affects BBB permeability, we listed seven com-
pounds that have better consensus predictions from the hybrid
model compared to the conventional QSARmodel, with their
nearest neighbor compounds using chemical and transporter
descriptors (Table I). The predicted activities for the nine
transporters can be viewed as the transporter interaction
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profile for each compound (the range-scaled transporter inter-
action profiles are listed in the last column of Table I, blue:
query compound, red: chemically nearest neighbor, green:
combined nearest neighbor). The BBB permeability results,
as well as transporter interaction profiles, indicate that chem-
ically similar compounds do not always have similar biological
responses. For example, in group A composed of beta

adrenergic receptor antagonists/agonists (Table I), Toliprolol
(CID 18047, red line in transporter profile) is the most struc-
turally similar compound to Atenolol (CID 2249, blue line in
transporter profile), which is a drug used to treat hypertension,
yet the BBB permeability and transporter interactions are
quite different, especially for MRP4 and MRP5. However,
after including the transporter descriptors, the new nearest
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Fig. 5 The PubChem assay
response-BBB permeability
correlations: (a) Heat-map for the
response profiles of 275
compounds against 310 PubChem
assays. The assays were sorted by
predictivity to BBB permeability, and
the AIDs were shown every five
assays. The Psum of each assay were
calculated for the eight groups
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assays negatively correlated to BBB
permeability (circled by green dots)
and 144 assays positively correlated
to BBB permeability (circled by
orange dots). (b) Average Psum
values for different PubChem assays
with the same compound
distribution as above heat-map.
(Orange line: 144 positively
correlated assays, green line: 11
negatively correlated assays, yellow
line: remaining 155 uncorrelated
assays).
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Table I Groups of Compounds with Transporter Profiles Comparison

18047 0.34 0.79

2083 -1.14 0.65

2583 0.01 0.64

5978 -1.03 0.61
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A
SB

T
 

M
C

T
1 

O
A

T
P

2B
1 

B
SE

P
 

M
D

R
1 

M
R

P
1 

M
R

P
3 

M
R

P
4 

M
R

P
5

* 2249

Structures CID Exp. logBB ChemSim

-1.14 -

* 31703 -0.83 -

* 9864647 0.63 -

Group A                                    
Query Compound* Predictions:       

Pred(MOE) = -0.35       
Pred(HBD) = -0.52      

Group B                                      
Query Compound* Predictions:       

Pred(MOE) = -1.4       
Pred(HBD) = -1.23      

Group C                                    
Query Compound* Predictions:       

Pred(MOE) = -0.05       
Pred(HBD) = 0.11      

10201984 0.88 0.94

22620091 0.85 0.69

72108 -2 0.8

14022522 -1.3 0.64

115237 -0.67 0.99

10937291 -0.23 0.61

5405 0.64 0.89

* 55482 -1.88 -

* 475100 -0.67 -

Group C                                    
Query Compound* Predictions:       

Pred(MOE) = -0.05       
Pred(HBD) = 0.11      

Group D                                     
Query Compound* Predictions:       

Pred(MOE) = -0.84       
Pred(HBD) = -1.13      

Group E                                       
Query Compound* Predictions:       

Pred(MOE) = -0.43       
Pred(HBD) = -0.65      

Group F                                         
Query Compound* Predictions:       

Pred(MOE) = -0.45       
Pred(HBD) = -0.6 

* 3348 -0.98 -

6426129 -0.89 0.61

23274095 -0.01 0.84

10352163 -0.24 0.84

-

Group G                                   
Query Compound* Predictions:       

Pred(MOE) = -0.54       
Pred(HBD) = -0.33

Group F                                         
Query Compound* Predictions:       

Pred(MOE) = -0.45       
Pred(HBD) = -0.6 

* 92242 -0.01

In transporter profiles, blue: query compound, red: chemically nearest neighbor, green: combined nearest neighbor

Abbreviations: Pred(MOE) predicted logBB value frommodel based on the MOE descriptors, Pred(HBD) predicted logBB value from the hybrid model, Exp. logBB
experimental logBB value, ChemSim chemical similarity to the query compound

*Query compound, listed as the first compound in each group, was compared to the two neighbors using the chemical w/o transporter descriptors. Second
compound in each group is the chemically nearest neighbor. The third compound in group is the top nearest neighbor (in groups A, B, C, F and G) or second
nearest neighbor (in groups D and E when the second compound is also the top nearest neighbor) with hybrid descriptors
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neighbor Salbutamol (CID 2083), a drug used for the relief of
bronchospasms, has the same BBB permeability and similar
transporter interactions with Toliprolol. Similar conditions
were also observed in group B and C (Table I). This can
potentially be a solution to the Bactivity cliff^ issue in QSAR
studies (23,37,38). The differences in transporter interaction
activities are able to differentiate the two structurally similar
compounds in chemical space but with different bio-activities,
thus correct the prediction for the query compound. There-
fore, including meaningful biological descriptors (e.g., trans-
porter descriptors in this study) can improve the resulting
models.

Through the analysis of the transporter interaction profiles,
we are able to interpret the biological mechanisms of BBB
permeability for specific compounds. For example, in group
B of Table I, the query compound Doxorubicin (CID 31703,
blue line in transporter profile), a DNA intercalator used in
cancer chemotherapy, and its chemical nearest neighbor
Carteolol (CID 2583, red line in transporter profile), a non-
selective beta blocker used to treat glaucoma, are not actually
quite structurally similar (Tanimoto coefficient=0.64) and
have significantly different logBB values. After including the
transporter descriptors, Doxorubicin and its new nearest
neighbor Vincristine (CID 5978, green line in transporter
profile), a mitotic inhibitor used in cancer chemotherapy, have
closer logBB values. The transporter interaction profiles of
these two compounds are similar and they both have higher
affinity in four of the five efflux pump transporters (MDR1,
MRP1, MRP3, MRP4 and MRP5) than Carteolol. This sup-
ports the theory that higher interaction activity with efflux
transporters indicates lower BBB permeability. Regarding
the two query compounds in group D and E in Table I, their
chemical nearest neighbors have same logBB values but the
model predictions are still not close. This is due to the exis-
tence of other chemically similar compounds with different
logBB values that were used to predict the activities of the
query compounds. The query compounds have higher simi-
larities in the transporter interaction profile with their new
neighbors after including the transporter descriptors
(Table I). The better predictions benefit from increasing the
distance in chemical space for the structural nearest neighbors
with different transporter interaction profiles as well as de-
creasing distance for those with similar transporter interaction
profiles. In group F and G, specifically, the combined evalua-
tion results in the same nearest neighbors, thus the third line in
each of these groups showed the second combined nearest
neighbor. The correction of prediction is not from the first
nearest neighbor itself, but from a combination of neighbors.
The first nearest neighbors in these cases have Bactivity cliffs^
with the query compounds, and the next neighbors help min-
imize the prediction error. The limitation of transporter assays
to clear Bactivity cliffs^ also suggests the limitation of informa-
tion provided by the nine transporter assays.

Using our in-house automatic profiling tool (9), 310
PubChem assays were identified to have data for the com-
pounds in our BBB permeability dataset. Among them, 155
PubChem assays were identified to be somewhat correlated
with the BBB permeability with Predictivity ≥70% or
Predictivity ≤30% (Fig. 5). Among these PubChem assays,
many of the assay targets and receptors were proven to regu-
late, be regulated by or be relevant to BBB permeability, e.g.,
androgen receptor (40), MDR1 (31), serotonin (5-HT) recep-
tor (41), adenylate cyclase (42), etc. See Supplementary file
Table SIII for those assays and description. For example, for
PubChem assays correlated to high BBB permeability (144
assays as circled in the orange dots in Fig. 5a), the 35 com-
pounds with the highest BBB permeability (logBB values
range from 0.85 to 1.65) show higher Psum values in these
assay results than the other compounds with lower BBB per-
meability. Therefore, if a compound shows an active response
in these bio-assays, it is likely to have high BBB permeability.
One particular useful assay (AID 943) is a qHTS assay to
identify small molecule antagonists of the androgen receptor
signaling pathway. Androgen was reported to upregulate the
transmembrane transporter MRP4 through androgen recep-
tor activation in prostate cancer cells (43), thus, it was consid-
ered as a potentially informative bio-descriptor resource.
Among the compounds tested in this assay, the Psum increases
with logBB value increment (data not shown). The average
values of the 144 positively-correlated assay (as circled in the
yellow dots in the bottom of Fig. 5a) results show similar cor-
relation with logBB values (orange line in Fig. 5b) and the
average values of the other 11 negatively-correlated assays
(as circled in the green dots in the top of Fig. 5a) show reversed
correlation with logBB values (green line in Fig. 5b). The
remaining assays, identified as non-correlated, (not circled in
Fig. 5a) show no/low correlation with logBB values (yellow
line in Fig. 5b).

This analysis provided many potential targets as meaning-
ful biological descriptors, but their uses are limited due to
missing data. This can be addressed by deriving correspond-
ing individual QSAR models whose predictions are then used
as descriptors, or by developing novel algorithms to integrate
the currently available assay data into the modeling process.
The current hybrid logBB model is expected to be further
enhanced when this information is included.

CONCLUSION

In this study, we compiled a large and diverse BBB perme-
ability dataset consisting of 439 unique compounds and ap-
plied a consensus QSAR approach to develop predictive
logBB models. All of the resulting models showed predictivity
that is better than or comparable to those previously reported.
The consensus model obtained by averaging the predictions of
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individual models achieved similar predictivity to the best in-
dividual models.

QSAR models for nine transporters were used to generate
extra descriptors for the compounds in the BBB permeability
dataset. Hybridmodels, based on the combination of the same
chemical descriptors and nine transporter descriptors, showed
better performance than traditional QSAR models. Through
analyzing the nearest neighbor compounds in the traditional
QSAR and hybrid models, we found that some Bactivity cliff^
issues could be resolved by using hybrid models. Using our in-
house automatic profiling tool, some PubChem assays were
also considered to be correlated to BBB permeability. These
assays can be potential biological descriptors (after developing
their corresponding QSARs) to further improve the current
hybrid models. Our research proposed a new strategy to en-
hance the traditional predictive modeling (e.g., QSAR) of com-
plex biological activities by including extra biological
descriptors.
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